signxai.tf_signxai.methods_impl package
Subpackages
- signxai.tf_signxai.methods_impl.innvestigate package
- Subpackages
- signxai.tf_signxai.methods_impl.innvestigate.analyzer package
- Subpackages
- Submodules
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.base module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.deeplift module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.deeptaylor module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.gradient_based module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.misc module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.pattern_based module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.reverse_map module
- signxai.tf_signxai.methods_impl.innvestigate.analyzer.wrapper module
- Module contents
- signxai.tf_signxai.methods_impl.innvestigate.applications package
- signxai.tf_signxai.methods_impl.innvestigate.backend package
- signxai.tf_signxai.methods_impl.innvestigate.tests package
- signxai.tf_signxai.methods_impl.innvestigate.tools package
- signxai.tf_signxai.methods_impl.innvestigate.utils package
- signxai.tf_signxai.methods_impl.innvestigate.analyzer package
- Submodules
- signxai.tf_signxai.methods_impl.innvestigate.layers module
Constant()Zero()One()ZerosLikeOnesLikeAsFloatXFiniteCheckGradientGradientWRTMinMaxGreaterLessGreaterThanZeroLessThanZeroGreaterEqualLessEqualGreaterEqualThanZeroLessEqualThanZeroSumMeanCountNonZeroIdentityAbsSquareClipProjectPrintTransposeDotSafeDivideRepeatReshapeMultiplyWithLinspaceTestPhaseGaussianNoiseExtractConv2DPatchesRunningMeansBroadcastGatherGatherND
- Module contents
- Subpackages
Submodules
signxai.tf_signxai.methods_impl.grad_cam module
Title: Grad-CAM class activation visualization Author: [fchollet](https://twitter.com/fchollet) Date created: 2020/04/26 Last modified: 2021/03/07 Description: How to obtain a class activation heatmap for an image classification model.
Adapted from Deep Learning with Python (2017).
- class signxai.tf_signxai.methods_impl.grad_cam.GradCAM(model, last_conv_layer_name)[source]
Bases:
objectGrad-CAM implementation for TensorFlow models.
Grad-CAM uses the gradients of a target concept flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for prediction.
- signxai.tf_signxai.methods_impl.grad_cam.calculate_grad_cam_relevancemap_timeseries(x, model, last_conv_layer_name, neuron_selection=None, resize=True)[source]
Calculate Grad-CAM relevance map specifically adapted for time series data.
- Parameters:
x – Input data, expected shape: (batch_size, time_steps, channels)
model – Model to analyze
last_conv_layer_name – Name of the last convolutional layer
neuron_selection – Index of neuron to analyze (None for predicted class)
resize – Whether to resize heatmap to input size
- Returns:
Relevance map with shape matching the input if resize=True
signxai.tf_signxai.methods_impl.guided_backprop module
Source: https://github.com/Crispy13/crispy
- signxai.tf_signxai.methods_impl.guided_backprop.build_guided_model(model)[source]
Builds guided model
- signxai.tf_signxai.methods_impl.guided_backprop.guided_backprop_on_guided_model(model_no_softmax, img, layer_name)[source]
Returns guided backpropagation image.
- Parameters:
model_no_softmax (a keras model object)
img (an img to inspect with guided backprop.)
layer_name (a string) – a layer name for calculating gradients.